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The motion, with constant velocity, of a normal load along an elastic beam lying on an elastic isotropie homogeneous half-space 
is considered. A method for the approximate calculation of the normal displacements of the surface of the half-space for subsonic 
velocities of motion is developed. An estimate is given of the expressions obtained and a comparison is made with existing results 
for the problem of the motion of a point load along a half-space. © 1999 Elsevier Science Ltd. All rights reserved. 

The problem of the motion of a point load along an infinitely long beam lying on an elastic half-space 
was considered in [1]. In addition to the formulation of this problem, an axial compression of the beam 
was introduced in [2]. The unsteady problem of the action of a uniformly moving force on a homogeneous 
isotropic half-space, taking into account the sudden application of the load, was solved in [3]. The equi- 
variable motion of a force along a Timoshenko-type beam lying on an elastic base was investigated in 
[4]. The stress state of an elastic half-space due to a uniformly moving normal load, distributed in a 
strip of the surface of half-space, was considered in [5]. A method of determining the displacements 
in an elastic half-space containing a depressed cylindrical cavity when an oscillating point load along 
the generatrix of the cylinder moves uniformly over the surface of a half-space was presented in [6]. 
The deformation of an elastic beam lying on a Wmkler base when there is non-axial bending of a mobile 
point load was considered in [7]. A solution of the problem of the motion, with constant velocity, of a 
point load over the surface of an elastic half-space was given in [8]. 

A comparison of the results obtained in the above-mentioned papers showed that, in the limiting 
case, when the materials of the half-space and the beam are the same, the approximate solution presented 
converges asymptotically to the solution obtained in [8] as one moves away from the point of application 
of the load. 

1. F O R M U L A T I O N  O F  T H E  P R O B L E M  

A point load of intensity P moves with constant velocity c (see Fig. 1) along a beam lying on an elastic 
half-space. The oseiUations of the axis of the elastic beam are described by the equation [1] 

B O4w O2w 
a 7  = P(x,t) (1.1) 

where w(x, t) is the normal displacement of the beam axis, B = Et,/is its bending stiffness, Pb is the 
density of the beam material andp(x, t) is the intensity of the load applied to the beam. 

In a fixed system of coordinates, the displacement vector in an elastic half-space satisfies the equation 
[9] 

~2 n 
llAu + (~ + lt)V div u = 13 Bt 2 (1.2) 

where u(ux, uy, uz) is the displacement vector and k, ~t, p are the constants of the material of the base. 
It is assumed that no friction force acts between the beam and the surface of the half-space, i.e. 

8u~ ~Ux ~u. Our 
Ox + a z  =0, ----~+----~=0 when z=O (1.3) 
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Fig. 1. 

To solve the problem we will use the condition that the normal displacements of the axis of the beam 
and the elastic half-space under it are identical, namely 

w(x, t) = u,(x, y = O, z = O, t) (1.4) 

The load is applied to the base uniformly over the width of the supporting strip. 
The problem is assumed to be stationary in a moving system of coordinates, in which the load is applied 

at the origin of coordinates. 
The purpose of this investigation is to obtain an approximate expression for the normal displace- 

ment of the surface of the half-space, which can be effectively used in calculations. 
We will introduce a moving system of coordinates, connected with the load [1]. In this system, the 

normal displacement of the axis of the elastic beam satisfies the equation 

B a4W 2 ~2W ~-~7-+pbc ~ = P(x) (1.5) 

Equation (1.2) in the moving system takes the form 

IIAU + (~. + ~t)V div U = pc 2 ~2U (1.6) 
-f i r  

Here U(Ux, Uy, Uz) is the displacement vector in the half-space in the moving system. 
The displacement field U can be expanded in potential and solenoidal components: U = VO + U'. 

The potential function • and the vector U' satisfy the equations 

- --o, a-e fj --o, . ivu,--o 
(1.7) 

= ~ = ~ ,  Cp = C$ = 
Cp C s 

where h and k are the ratios of the velocity of motion of the load to the longitudinal and transverse 
velocities of sound in the beam. 

We will apply a Fourier cosine and sine transformation to the first two equations of (1.7). The number 
of unknown functions (inverse transformants) is reduced to two when using (1.3) and the third equation 
of (1.7). The remaining two unknown functions are found from condition (1.4) that the displacement 
of the beam axis and the surface of the half-space under it should be identical. 

We will write an expression for the normal displacement of the surface of the elastic half-space under 
the moving load [1] 

4(1 - v 2) P S(u)du (1.8) 
u, (o, o, o) = ~ - g  i u+eu~( u~ + 8 2)s(u) 

where 
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kS 7 /~ s in(u~)d~ 
S(u) 

~ - v  Jo - k*] ~[4D2 (Dl _ D2)D~ (1.9) 

D~--I+~ s, DlS=l+'cS-h s, D~-l+xS-k s 

e = 2(I - v s) 

E and v are the constants of elasticity of the base and b is the width of the supporting strip. 
Following the method of solution proposed in [1], we will represent the normal displacement of the 

surface of the half-space in the form 

where 

2x 
U,(x,y,0) = ------~-- ~- ~ 1 + re (as  _ 8a)$(a) 

k s " d 1 sinl~ 

ag = ~" + a s, d~ = If '  + 0 - h" )o(', a~ = ~'  + 0 - ~:" ~ "  

(1.10) 

(1.11) 

A considerable amount of calculations is required to calculate the displacements using Eq. (1.10), 
since the integrals contain rapidly oscillating functions. We show below how one can obtain an 
approximate expression for (1.10) with fairly generally assumptions. 

2. THE A P P R O X I M A T I O N  OF THE INTEGRALS I(ct, y) AND S(u)  
BY POWER SERIES 

The majority of modem terrestrial transport vehicles move with velocities that are an order of 
magnitude smaller than the velocity of propagation of acoustic waves, and consequently, at subsonic 
velocities of motion of the load the parameters h 2 and k 2 are small. 

We will expand the functions dl and d2 in series in powers of h 2 and k 2 and take the first two terms 
of the expansions 

t2 h 2, _ a s k s 
d, ,,,, do - ~-- ~-  ~ , , ,do  ~ -  (2.1) 

In the expression under the integral l (a ,  y )  we can write 

sin~cos(?)13 = 21'(sinad~-sina21])' alffi'~ +I' a2 = 2Y-lb (2.2) 

We substitute expressions (2.1) and (2.2) into (1.11) and make the replacement 13 = ax. At subsonic 
velocities it is possible to write 

where 

1 k~0 °'k 2k4 - k2h2 
~ =  Do"~"~rk~-"t', if= 2(k 2 -h 2) 

We finally have the following approximate expression 

4(k2 _ h 2 ) fo (¢XCtl) - fo (°utx2) + ~k=o ~ (fk+, (0tCq) - f~+1 (0tOt2))a* 

fk(a) 7 sinwca~ 2k 4 - 2k2h 2 + h 4 
--" I , ~= 2(k2_h2) 

o .t(,~2 + 1)~ +k 

(2.3) 

(2.4) 
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Similarly, using the apprqximations 

D;.Do_ 1 h2 ' Dz=Do_ I k2 
2/)o 2/)o 

(2.5) 

integral (1.9) can be represented in the form 

s(a)= ~ k2{ k_'Eo } 2(k2_h2) 1_-'~_ fo(a)+~ = fk+l(a)Ok (2.6) 

It follows from (2.3) and (2.6) that the problem of obtaining an approximate expression for the normal 
displacement Uz(x, y, 0) of the surface of the half-space has been reduced to evaluating the integrals 
(2,4). 

3. EXPANSIONS OF THE FUNCTIONS fk(c~) IN POWER SERIES 

The integral off0(Qt) can be expressed in terms of the MacDonald function 
Q 

fo(a) = [ go(u)du (3.1) 
0 

Using the well-known expansion of K0(o 0 in a power series [10], we have 

:o { /°/}(°/"'' 2 ~ l _ c  + 1 - In  (3.2) 
A ( a ) =  (2k+lXt!)2 ,=~ n 2k+1 ~ 

We will show how (3.2) is obtained. The representation off0(a) in terms of a Meyer function is well 
known; this is expressed by existing parameters in terms of an integral containing the F-function [11] 

1 2! [ a2 ] 1 1 o =~-~[r i - s  ~ T 
2'  

(3.3) 

where L is the contour enclosing the singular points s = 1/2 . . . . .  1/2 + k . . . . .  To obtain the residues 
Y-l. k of integrand (3.3), we need the coefficients an,*, b n,*, Cn. k of the lowest two terms of the expansions 

2 1 "2s of F(s), F (s), s- (0/2) in the neighbourhoods of these singular points. 
The coefficients an,, are known [12] 

(~ff, (-I)' {~. l_c } (3.4) 
a-I'k = ~ a°'k = k!  n=l 

(C is Euler's constant). The coefficients bn k are obtained by multiplying the corresponding an k. T h e  
1 2s coefficients Cn.k are taken from the Taylor series of the function s- (0/2) . 

Multiplying the corresponding bn,* and cn,*, we obtain Y-I,~, while the integralf0(ot) takes the form [13] 

4 {~ l _ c  + I _lna~(o~ 2k+' 
fo((Z)= ,1 ~. Y-t.k, Y-l.k = (2k+l)(k!)2 n=, 2k+l  2"J~,2-; k=O n 

We can similarly obtain expansions of the remaining integrals (2.4). For example 

~l 4 l _ c  + + 1 -In 
f l ( a ) = ° ~ -  k ! ( k - 1 ) ! ( 2 k + l )  tn--I n 2k+l  

(3.5) 

2 _4(¢x~ 3 2 ~, 4 
A(a) =-a + x 3 9k, 2) ~k=2 k t ( k - 2 ) ! ( 2 k + l )  

x ~k~.! 1 _ C 4  l + I {I ] / r{X~ 2k+l 

""tn--' n "2k-"~-I 2k(2k+l) ln~-~[-~-J 
(3.6) 
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Hence, the expression for the normal displacement can be represented in the following form, which 
is more convenient for calculations 

Uz(x'y'O)= 2x 2 b l,t(~,+la) f°(ff'o~l)-f°(ff'o~2)+~k=o ~ [fk+1(OtOtl)--fk+l(OtOt2)]~k X 

t¢ -i 2x 

L k=o J j 
(3.7) 

( 1 0 ~ - - .  D 

7t 2 la(~, + g )  
- - ,  N = const  

When obtaining the expression for the normal displacement under the beam (y = 0) one can use the 
oddness of the functionsfk(Gt). 

4. C O M P A R I S O N  O F  T H E  S O L U T I O N  W I T H  T H E  R E S U L T S  
O B T A I N E D  P R E V I O U S L Y  I N  [8] 

The following expression for the normal displacement of the surface of an elastic half-space under 
a point load, moving along the surface, in a moving system of coordinates is given in [8] 

pk  2 

2 Xl.t r f l  k r ) l \ r / J 

. = 4 1 1 -  h2 sin2(Y)] ~j [1-kZ sin2(Y)] ~j - [ 2 -  k2 sin2(Y)] 2 

r 2 =X2 + y 2  

We calculated the normal displacement of a section of the surface 0 < x < 50 m, y = 1.36 m using 
(3.7) and (4.1). Figure 1 shows the displacements calculated from these formulae in a moving system 
(curves 1 and 2, respectively), for the case when the material of the beam is the same as the material 
of the base and is close in its physical-mechanical characteristics to limestone [14]. We took the following 

4 4 values of the constants: P = 10 N, c = 44.44 m/s, b = 2.7 m and J = 0.0027 m .  The solutions are 
practically identical as one moves away from the point of application of the load, but the maximum 
difference in the displacements (when x = 0) is ~30%. A comparison of the displacements along the 
same section for characteristics of the material of the half-space close to those of granite, slate and 
gneiss and a permanen t material of the beam (sandstone) showed that these displacements resemble 
curve 1 and differ only in value. 

It follows from the above that when the velocities of motion of the load are an order of magnitude 
smaller than the velocity of sound, the determination of the displacements in the elastic base is simplified 
considerably. The approximate solution obtained agrees asymptotically with the existing solution [8] 
as one moves away from the region of application of the load, when the materials of the beam and the 
half-space are the same. 
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